Profile Trees for Büchi Word Automata, with Application to Determinization
نویسندگان
چکیده
The determinization of Büchi automata is a celebrated problem, with applications in synthesis, probabilistic verification, and multi-agent systems. Since the 1960s, there has been a steady progress of constructions: by McNaughton, Safra, Piterman, Schewe, and others. Despite the proliferation of solutions, they are all essentially ad-hoc constructions, with little theory behind them other than proofs of correctness. Since Safra, all optimal constructions employ trees as states of the deterministic automaton, and transitions between states are defined operationally over these trees. The operational nature of these constructions complicates understanding, implementing, and reasoning about them, and should be contrasted with complementation, where a solid theory in terms of automata run DAGs underlies modern constructions. In 2010, we described a profile-based approach to Büchi complementation, where a profile is simply the history of visits to accepting states. We developed a structural theory of profiles and used it to describe a complementation construction that is deterministic in the limit. Here we extend the theory of profiles to prove that every run DAG contains a profile tree with at most a finite number of infinite branches. We then show that this property provides a theoretical grounding for a new determinization construction where macrostates are doubly preordered sets of states. In contrast to extant determinization constructions, transitions in the new construction are described declaratively rather than operationally.
منابع مشابه
Relating Word and Tree Automata
In the automata-theoretic approach to verification, we translate specifications to automata. Complexity considerations motivate the distinction between different types of automata. Already in the 60’s, it was known that deterministic Büchi word automata are less expressive than nondeterministic Büchi word automata. The proof is easy and can be stated in a few lines. In the late 60’s, Rabin prov...
متن کاملExponential Determinization for ω-Automata with Strong-Fairness Acceptance Condition
In [Saf88] an exponential determinization procedure for Büchi automata was shown, yielding tight bounds for decision procedures of some logics ([EJ88, Saf88, SV89, KT89]). In [SV89] the complexity of determinization and complementation of ω-automata was further investigated, leaving as an open question the complexity of the determinization of a single class of ω-automata. For this class of ω-au...
متن کاملA Tight Lower Bound for Determinization of Transition Labeled Büchi Automata
In this paper we establish a lower bound hist(n) for the problem of translating a Büchi word automaton of size n into a deterministic Rabin word automaton when both the Büchi and the Rabin condition label transitions rather than states. This lower bound exactly matches the known upper bound to this problem. The function hist(n) is in Ω((1.64n)) and in o((1.65n)). Our result entails a lower boun...
متن کاملA Modular Approach for Büchi Determinization
The problem of Büchi determinization is a fundamental problem with important applications in reactive synthesis, multi-agent systems and probabilistic verification. The first asymptotically optimal Büchi determinization (a.k.a the Safra construction), was published in 1988. While asymptotically optimal, the Safra construction is notorious for its technical complexity and opaqueness in terms of ...
متن کاملDeterminization Complexities of ω Automata
Complementation and determinization are two fundamental notions in automata theory. The close relationship between the two has been well observed in the literature. In the case of nondeterministic finite automata on finite words (NFA), complementation and determinization have the same state complexity, namely Θ(2) where n is the state size. The same similarity between determinization and comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015